

ICCECIP 2023

Minimizing Energy Losses in the modern E-bikes by New Integrated Strategies for Adaptive Control

Emilian CEUCA

Associate Professor PhD. 1 DECEMBRIE 1918 University of Alba Iulia

5th International Conference on Central European Critical Infrastructure Protection 13-14 November 2023 / Budapest, Hungary

Objectives

- Introduction
- Mathematical model
- Simulation by MatLab
- Psice model for discharge
- Prototype produced by University
- Measured results
- Power estimation
- Power validation and Future work
- Conclusion

1. INTRODUCTION

- This paper presents a study on the mathematical equations of discharge and optimal operation of batteries used in modern travel systems;
- Use in real operating conditions is very difficult due to the multiple parameters that affect their performances;
- The paper aims to operate a methodology for evaluating and estimating the most important parameters that affect their performance;
- The article will review the relevant aspects of the practical realization and the main challenges due to the measurements and experimental validation.

2. MATHEMATICAL MODEL

2)

Fig. 1. The mathematical model of the battery discharge at constant load a). and constant current b).

$$u_B = u + rC \frac{du}{dt}$$
$$= \frac{uR_d \left(1 - \frac{r}{r_1}\right) + (u + u_1)R_d \frac{r}{r_1}}{R_d + r + R_d \frac{r}{r_1}}$$

$$u_{B} = u + rC\frac{du}{dt} = \frac{u_{1}r + ur_{1} - I_{d}rr_{1}}{r + r_{1}}$$
(5)

3. MATHEMATICAL MODEL - simulated by Matlab

Fig. 2. The mathematical approach for e-bikes batteries with 36 V and 11 Ah

4. SIMULATION AND MEASUREMENT RESULTS Pspice Schematic

(36V11Ah)	Experimental	Simulated
lo=1A	12 h	16 h
lo=3.5A	6 h	8 h
lo=11A	1.5 h	1.8 h

5. Prototype - 1 DECEMBRIE 1918 University

BLDC motor

electric BIKE v.01

6. MEASUREMENT and RESULTS

PROTOTIP UNIVERSITATE

7. POWER ESTIMATION

Fig. 10. The simulation result for a road with 2% grade

Fig. 11. The simulation result for a road with 7% grade

Human Pwr (W)Wheel Torq (Nm)					Mtr Pw	/r (W)	Load (\	N)	Eff (%)	Speed	(kph)	Mtr RP	M	Mtr Cu	rrent (A) Batt Pwr (W)	
	Batt Current (A)Batt Volts (V)				Acc (kp	c (kph/s) Consump (Wh/km)			Range <mark>(</mark> km)		Overheat In (mins)		ins)	Final Temp (°C)		
	96	17.7	552	648	80.9	37.0	297.6	20.7	682	19.9	34.3	-0.00	18.4	22	never	61
	108	17.4	544	656	81.0	37.3	299.2	20.4	672	19.6	34.3	-0.02	18.0	22	never	60
	120	17.1	539	662	81.1	37.4	300.4	20.1	664	19.3	34.4	-0.02	17.8	23	never	59
	132	16.9	533	668	81.2	37.6	301.6	19.8	656	19.1	34.4	-0.01	17.5	23	never	59
	144	16.6	527	675	81.2	37.7	302.9	19.5	649	18.8	34.5	-0.01	17.2	24	never	58

8. POWER VALIDATION AND FUTURE WORK

Fig. 12. Power estimator as function of speed and load

ICCECIP 2023 Thank you for the kind attention!

5th International Conference on Central European Critical Infrastructure Protection 13-14 November 2023 / Budapest, Hungary